Kinematics and Numerical Algebraic Geometry

Charles Wampler

General Motors R\&D Center
Warren, Michigan, USA

Including collaborations with:
Andrew Sommese Jon Hauenstein Dan Bates
Notre Dame Texas A\&M Colorado St.

Outline

- Motivation:
- Brief introduction to kinematics
- Basic polynomial continuation
- Finding isolated roots
- Numerical algebraic geometry
- Dealing with positive-dimensional sets
- Examples from kinematics
- Some recent work
- Software

Part I

- Motivation
 - Kinematics in a nutshell

Why study polynomial systems?

- Mathematics
- Intrinsically interesting
- Algebra, algebraic geometry
- Nonlinear, but with lots of structure

$$
O_{2} \rightleftharpoons 2 \mathrm{O}
$$

$$
H_{2} \rightleftharpoons 2 H
$$

$$
N_{2} \rightleftharpoons 2 N
$$

$$
\mathrm{CO}_{2} \rightleftharpoons \mathrm{O}+\mathrm{CO}
$$

$$
O H \rightleftharpoons O+H
$$

$$
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{O}+2 \mathrm{H}
$$

$$
N O \rightleftharpoons O+N
$$

$k_{1} X_{O_{2}}=X_{O}^{2}$
$k_{2} X_{H_{2}}=X_{H}^{2}$
$k_{3} X_{N_{2}}=X_{N}^{2}$
$k_{4} X_{C O_{2}}=X_{O} X_{C O}$
$k_{5} X_{O H}=X_{O} X_{H}$
$k_{6} X_{H_{2} O}=X_{O} X_{H}^{2}$
$k_{7} X_{N O}=X_{O} X_{N}$.

- Application areas
- Economics \& finance

$$
\begin{aligned}
& T_{\mathrm{H}}=X_{\mathrm{H}}+2 X_{\mathrm{H}_{2}}+X_{\mathrm{OH}}+2 X_{\mathrm{H}_{2} \mathrm{O}} \\
& T_{\mathrm{C}}=X_{\mathrm{CO}}+X_{\mathrm{CO}_{2}} \\
& T_{\mathrm{O}}=X_{\mathrm{O}}+X_{\mathrm{CO}}+2 X_{\mathrm{O}_{2}}+2 X_{\mathrm{CO}_{2}}+X_{\mathrm{OH}}+X_{\mathrm{H}_{2} \mathrm{O}}+X_{\mathrm{NO}} \\
& T_{N}=X_{N}+2 X_{N_{2}}+X_{\mathrm{NO}}
\end{aligned}
$$

- Chemical equilibrium
- Computer-aided Geometric Design (CAGD)
- Polynomial surface patches (B-splines, etc.)
- Control theory
- Pole placement, Optimal control
- Kinematics...

Kinematics: Then \& Now

Model of Watt Engine 1784

Closed-chain planar

FANUC F200 Robot

NASA-GM Robonaut2

Open-chain spatial

Application: Kinematics

- Constrained mechanical motion
- Two major classes:
- Linkages for motion constraint \& transformation
- Suspensions, engines, swing panels, etc.

- Computer-controlled motion devices
- Robots, human-assist devices, etc.
- Rigid links + common joints = polynomial equations
- Algebraic kinematics

Rigid-Body Motion

- A rigid body has two defining properties:
- Preservation of distance
- Preservation of handedness
- Accordingly, the pose of a rigid body lies in SE(3)
- $S E(3)=\left\{(p, A): p \in \mathrm{R}^{3}, A \in S O(3)\right\}$
- $S E(3)$ is algebraic, subject to the defining eqns. for $S O(3)$:
- $A^{\mathrm{T}} A=\mathrm{I}, \operatorname{det} A=1$
- $\operatorname{dim} \operatorname{SE}(3)=6$

Joints: Lower-order pairs

$f=$ freedom
$c=$ constraint in SE (3)

Example: Serial 6R Robot

- Parameters given:
- Length d_{i}, offset $a_{i,}$, twist α_{i}
- Input:
- Rotation angle at each joint, θ_{i}
- Output:
- Position \& orientation of end of arm, $\mathrm{T}_{\text {end }}$

$$
T_{\text {end }}=T_{1} \cdot T_{2} \cdot T_{3} \cdot T_{4} \cdot T_{5} \cdot T_{6}
$$

$$
T_{i}=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\
s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Forward problem:
- Unique answer
- Inverse problem:
- Up to 16 solutions

Big Picture

Forward kinematics
input $: \begin{gathered}J(x, q) \\ \begin{array}{c}\text { Mechanism Space } \\ \text { (parameterized motions) }\end{array} \\ \\ K(x, q) \\ \text { output }\end{gathered}$
π :
$(x, q) \mapsto q$
polynomial system
$F(x, q)=0$,
$F: \mathrm{C}^{N} \times \mathrm{C}^{n} \rightarrow \mathrm{C}^{n}$

Mechanism parameter space
(link geometry)

Part II

- Basic polynomial continuation

What is Continuation?

- A method to solve N equations in N unknowns

$$
F(x)=0, \quad F: \mathbf{C}^{N} \rightarrow \mathbf{C}^{N}
$$

- Step 1: Define a homotopy

$$
H(x, t)=0, \quad H: \mathbf{C}^{N+1} \rightarrow \mathbf{C}^{N}
$$

such that

$$
H(x, 0)=F(x) \text {, and } H(x, 1)=0 \text { is easily solved. }
$$

- Step 2: From each solution point of $H(x, 1)=0$, follow the solution paths of $H(x, t)=0$ as t goes to 0 .
- For polynomial systems, we can choose H to ensure that
- All the paths go all the way to $t=0$.
- Every isolated solution of $F(x)=0$ has a path leading to it.

Basic Total-degree Homotopy

To find all isolated solutions to the polynomial system

$$
\left[\begin{array}{c}
\mathrm{f}_{1}\left(x_{1}, \ldots, x_{N}\right) \\
\vdots \\
\mathrm{f}_{N}\left(x_{1}, \ldots, x_{N}\right)
\end{array}\right]=0, \quad \operatorname{deg}\left(\mathrm{f}_{i}\right)=\mathbf{d}_{\mathbf{i}}
$$

form the linear homotopy

$$
H(x, t)=(1-t) F(x)+t G(x)=0
$$

where

$$
g_{i}(x)=a_{i} x_{i}^{\mathrm{d}_{\mathbf{i}}}+b_{i}, a_{i}, b_{i} \text { random, complex. }
$$

Number of paths to track $=d_{1} \cdot d_{2} \cdots d_{N}$

Solution paths

- Paths $x(t)$ implicitly defined by homotopy

$$
H(x ; p(t))=0
$$

Why it works: Generic Root Count

- A parameterized family of polynomial systems $F(x, q)=0$ has a generic root count:
- Assume F : $\mathrm{C}^{N} \times Q \rightarrow \mathrm{C}^{n}, Q$ an irreducible algebraic set
- For almost all $q \in Q, F(x, q)=0$ has the same number of nonsingular, isolated roots. This is the generic root count.
- The exceptions in Q are a proper algebraic subset.
- So, a random 1-real-dimensional path in Q misses exceptions with probability one.
- For a nested parameter space, the generic root count can only go down. ("Upper semi-continuity")

Parameter Continuation

- Start system easy in initial parameter space
- Root count may be much lower in target parameter space
- Initial run is 1-time investment for cheaper target runs

Parameter Continuation: 9-pt path synthesis

- Total degree
- $7^{8}=5,764,801$
- Multihomogeneous
- 286,720
- Symmetry
- 143,360
- Parameter homotopy
- 1442 paths

Part III

- Numerical Algebraic Geometry

Irreducible Decomposition

Univariate	Multivariate System
1 Equation, 1 Variable	n Equations, N Variables
solution points	sol'n points, curves, surfaces, etc.
double roots, etc.	sets with multiplicity
Factorization, $\prod_{i}\left(x-a_{i}\right)^{\mu_{i}}$	Irreducible decomposition
Numerical Representation	
list of points	

Numerical Irreducible Decomposítion

Witness Set

- Intersection of an algebraic set with a linear space of complementary dimension
- Get d points on each degree d component
- Defined dimension-by-dimension
- Witness set generation
- Slice for every dimension
- Homotopy finds all isolated solutions at each dimension
- Decomposition
- Remove "junk" points
- At each dimension, sort witness set into irreducible components

Part IV: Examples

- Let's see Numerical Algebraic Geometry at work in kinematics

Example: 7-bar Structure

Problem:

Assemble these 7 pieces, as labeled.

Result for Generic Links

18 rigid structures

- 8 real, 10 complex for this set of links.
-All isolated - can be found with traditional homotopy

Special Links (Roberts Cognates)

Dimension 1:
$6^{\text {th }}$ degree four-bar motion

Dimension 0:
1 of 6 isolated (rigid) assemblies

Exceptional Stewart-Gough Platform

- Case 1: Top \& bottom plates are equilateral triangles
- Degree of top platform motion in Study (dual quaternion) coordinates is 28
- Degree of path of a tracing point is 40.

- Case 2: In addition, leg lengths equal \& plates congruent
- Factors as $6+(6+6+6)+4=28$

Even More Exceptional Stewart-Gough Platform

- As before, but with
- leg lengths = altitude of base triangle
- "Foldable Griffis-Duffy Platform"
- Degree 28 component now factors as

- $3 \times[2 \times 1]+3 \times 2+4+(4+4+4)$
- We have extracted the real parts of these complex components
- 3 double lines, 3 quadrics, 1 quartic

Part V

- Some recent work
- Equation-by-equation Regeneration

Working Equation-by-Equation

- Basic step

Regeneration: Step 1

Regeneration: Step 2

$\left.V_{0}\left(\left[\begin{array}{c}f_{1}(x) \\ \vdots \\ f_{k-1}(x) \\ \frac{L_{k, 1}(x) \cdots L_{k, d_{k}}(x)}{L_{k+1}(x)} \\ \vdots \\ L_{N}(x)\end{array}\right]\right) \xrightarrow[0]{ } \xrightarrow{\begin{array}{c}\text { Linear } \\ \text { homotopy }\end{array}} \xrightarrow{\left[\begin{array}{c}f_{1}(x) \\ \vdots \\ f_{k-1}(x) \\ \frac{f_{k}(x)}{L_{k+1}(x)} \\ \vdots \\ L_{N}(x)\end{array}\right]}\right)$
Repeat for $k+1, k+2, \ldots, N$

Test Run: Lotka-Volterra Systems

- Discretized PDE (finite differences) population model
- Order n system has $8 n$ sparse bilinear equations

--Total Degree
- -2 -Homogeneous
* Polyhedral
-\&-Regeneration
Total degree $=2^{8 n}$

Polyhedral (mixed volume)
$=2^{4 n}$ is exact

Lotka-Volterra Systems (cont.)

- Time Summary -- Single Processor

■ Regeneration parallelizes easily (polyhedral does not)

Software

- Hom4PS (v2.0)
- Isolated solutions only
- Fast polyhedral
- Author: T.-Y. Li (MSU)
- PHC
- Numerical algebraic geometry
- Polyhedral method
- Author: Jan Verschelde (UIC)
- Bertini (v1.2)
- Numerical algebraic geometry
- Parallel computing option
- Robust \& efficient adaptive multiprecision
- Regeneration
- Authors: Bates, Hauenstein, Sommese \& Wampler
- Free download at
- www.nd.edu/~sommese/bertini/

Wrap-up

- Much of kinematics is applied algebraic geometry
- Numerical polynomial continuation solves for isolated points
- Numerical algebraic geometry extends this to positive-dimensional sets
- Regeneration is the newest technique
- Bertini v1.2 offers all this \& more - Parallel computing, in particular

