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‘ Outline

s Motivation:
= Brief introduction to kinematics

= Basic polynomial continuation
= Finding isolated roots

= Numerical algebraic geometry
= Dealing with positive-dimensional sets

= Examples from kinematics
x Some recent work
s Software
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‘ Part |

= Motivation
s Kinematics in a nutshell
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Why study polynomial systems?

Oy = 20 ki Xo, = X},
= Mathematics Hy=2H kX, = X
. : _ Ny =2N kaXn, = X3
= Intrinsically interesting 0y = 0+ CO kX eon — XoXeo
Algebra, algebraic geometry OH=0+H ksXon = XoXp

Hg()-:‘O+QH lEi’G.X[j"z{_J :X{_'JX?JT

Nonlinear, but with lots of structure '~ = = X — XoXn.

= Application areas
= Economics & finance L e e
Nash Equilibria To = Xo + Xco +2Xo0, + 2X00, + Xon + Xmo + Xxo
= Chemical equilibrium fe= A2 Ao
= Computer-aided Geometric Design (CAGD)
Polynomial surface patches (B-splines, etc.)
= Control theory
Pole placement, Optimal control
= Kinematics...
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‘ Kinematics: Then & Now

FANUC F200

'” - Robot NASA-GM
Model of Watt Engine Robonaut?
1784 obonaut
Closed-chain planar Closed-chain spatial Open-chain spatial
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‘ Application: Kinematics

s Constrained mechanical motion

= Two major classes:

= Linkages for motion constraint &
transformation
Suspensions, engines, swing panels, etc.

= Computer-controlled motion devices
Robots, human-assist devices, etc.
= Rigid links + common joints =
polynomial equations
= Algebraic kinematics
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‘ Rigid-Body Motion

= A rigid body has two defining properties:
= Preservation of distance
= Preservation of handedness

= Accordingly, the pose of a rigid body lies in SE(3)
= SE(3)={(p,A): peR3 AcSO(3)}

= SE(3) is algebraic,
subject to the defining
egns. for SO(3):

= ATA=I, detA=1

= dimSE(3) = 6
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‘ Joints: Lower-order pairs
Prismatic Rotational Helical (Screw)

_>

f=1,c=5

Not Algebraic

Cylindrical

f=2,c=4

Plane

f = freedom

C = constraint
in SE(3)

Sphere

f=3,c=3
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‘ Example: Serial 6R Robot
= Parameters given:

= Length d; offset a; twist ¢
= Input:

= Rotation angle at each
joint, 6,

\‘\\\ | = Output:

__») = Position & orientation of
end of arm, T4
Tend -

T,-T,-T,-T,- T, - T,

1 0 0 &aj|c, —-s, O
dlllls O c -s, Oj|s, ¢ O

,/ Ti = ! | . i i
dl Os, ¢ 00 0 1
Ll 0 0 c 1,0 0 O

= Forward problem:
= Unique answer
= Inverse problem:
= Up to 16 solutions
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‘ Big Picture

Forward kinematics

Inverse kinematics

Mechanism Space

(parameterized motions)

K(x,q)

{ output

- polynomlal system
F(x,q0)=0,
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Solution set of (X q) Qg |

T .

Mechanism
parameter
space
(link geometry)

10

Mechanism
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‘ Part |1

= Basic polynomial continuation
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What Is Continuation?

= A method to solve N equations in N unknowns
F(x)=0, F:c" >C"

= Step 1: Define a homotopy
H(x,t)=0, H:C"*—>C"
such that
H(x,0) = F(x),and H(x,1) =0is easily solved.

= Step 2: From each solution point of H(x,1) =0,
follow the solution paths of H(x,t) =0as t goes to 0.

= For polynomial systems, we can choose H to ensure
that
= All the paths go all the way to t =0.
= Every isolated solution of F (x )=0 has a path leading to it.
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Basic Total-degree Homotopy

To find all isolated solutions to the polynomial system

=0, deg(f)=d,

form the linear homotopy
H(x,t) = (1-t)F(x) + tG(x)=0,

where
g,(x)=ax" +b, a,b random, complex.

[Number of paths to track = d1 - d2 ---dN ]
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‘ Solution paths

= Paths x(t) implicitly defined by homotopy
H (x; p(t)) =0

Nongeneric

Parameter space
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‘ Why 1t works: Generic Root Count

= A parameterized family of polynomial systems F(x,q)=0 has
a generic root count

= Assume F: CNxQ = C", Q an irreducible algebraic set

= For almost all g € Q, F(x,q)=0 has the same number of
nonsingular, isolated roots. This is the generic root count.

= The exceptions in Q are a proper algebraic subset.

= S0, a random 1-real-dimensional path in Q misses exceptions
with probability one.

= For a nested parameter space, the generic root count can
only go down. (“Upper semi-continuity”)
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‘ Parameter Continuation

initial
parameter
space

start

target
parameter
space

= Start system easy in initial parameter space
= Root count may be much lower in target parameter space
= Initial run is 1-time investment for cheaper target runs
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Parameter Continuation: 9-pt path synthesis

,,,,,,,

143,360

= Total degree
= 78=5,764,801

= Multihomogeneous
= 286,720

= Symmetry
= 143,360

= Parameter homotopy | -
s 1442 paths “
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‘ Part 111

= Numerical Algebraic Geometry
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‘ Irreducible Decomposition

Univariate
1 Equation, 1 Variable
solution points
double roots, etc.
Factorization, | [ (z — a;)"

Multivariate System
n Equations, NV Variables

sol’n points, curves, surfaces, etc.

sets with multiplicity

Irreducible decomposition

Numerical Representation

list of points

list of witness point sets

SIAM Annual Mtg. 2010, Pittsburgh

19




‘ Numerical Irreducible Decompos
= Withess Set

= Intersection of an algebraic set
with a linear space of
complementary dimension

Get d points on each degree d
component

= Defined dimension-by-dimension

= Witness set generation
= Slice for every dimension

= Homotopy finds all isolated
solutions at each dimension

= Decomposition
= Remove “junk” points

= At each dimension, sort witness
set into irreducible components
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‘ Part 1V: Examples

= Let’s see Numerical Algebraic Geometry
at work in kinematics
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‘ Example: 7-bar Structure

Problem:

Assemble these 7
pieces, as labeled.

B by
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‘ Result for Generic Links

18 rigid
structures

® 8 real, 10 complex
for this set of links.

*All isolated — can be
found with traditional
homotopy
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‘ Special Links (Roberts Cognates)

Dimension 1: Dimension O:

6t degree four-bar motion 1 of 6 isolated (rigid) assemblies
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‘ Exceptional Stewart-Gough Platform
This is an

his 1s

s Case 1: Top & aclzl?revber%l?
bottom plates are degree 40
equilateral

triangles
= Degree of top
platform motion
In Study (dual
guaternion)
coordinates is 28

= Degree of path of
a tracing point is
40. |
= Case 2: In addition, leg lengths equal &
plates congruent

= Factors as 6+(6+6+6)+4=28
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‘ Even More Exceptional Stewart-Gough Platform

s As before, but with

= leg lengths = altitude of base
triangle

= “Foldable Griffis-Duffy Platform”
= Degree 28 component now
factors as
n 3x[2x1]|+3x2+4+(4+4+4)

= We have extracted the real parts
of these complex components
3 double lines, 3 quadrics, 1 quartic
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‘ Part V

= Some recent work
= Equation-by-equation Regeneration
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‘ Working Equation-by-Equation

= Basic step

(

\

RAGE

fk—l.(x)
[ L, (X)]
Lk+1(X)

Ly .(X) _
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.

RAGE

fk—l.(x)
[ f (X))
Lk+1(X)

) LN.(X) ]




RACE

fk—l.(x)
Vol || L (X)

I—k+1 (X)

= (X) ),

fk—l.(x)
V|| Lea(X)

/ Lk+1 (X)

) I—N.(X) 1)e

\

move linear

fcn d, times
(use linear
homotopy)
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‘ Regeneration: Step 1
- f(X) ]

Union of
sets

v,

| Ly .(X) _

I fl(x)\-j;) V,

fk—l.(x)
Ly o, (X)
Lk+1(X)
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f,(x)

fk—l.(x)
[Lk,l(x) o Lyg, (X)]
L1 (X)

Ly .(X)




/
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T, (x)

fk—l.(x)

1)

[Lk,l(x) o Lyg, (X)]

I—k+1 (X)

I—N.(X)

homotopy

‘ Regeneration: Step 2

Linear

1/

()

fk—l.(x)
[ fi (X)]
Lk+1(X)

) LN.(X) ]

Repeat for k+1,k+2
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‘ Test Run: Lotka-Volterra Systems
= Discretized PDE (finite differences) population model

= Order n system has 8n sparse bilinear equations

14

12

10

Log,o(#paths)
>\

3
Order, n
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Total Degree
—a=—2-Homogeneous
=>&Polyhedral

—+=—Regeneration

Total degree = 28"

Polyhedral (mixed volume)
= 2%" is exact




‘ Lotka-Volterra Systems (cont.)
= TIme Summary -- Single Processor

5 mos
(polyhedral) Hom4Ps » Bertini
2.5 day
W2 (regeneration)
1 hour oHC
/ =l=-HOM4PS-2.0
. == Bertini
1 min /
]
1 sec / . : :
// 2 3 4 5
n Order, n
1/60 sec

B Regeneration parallelizes easily (polyhedral does not)
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‘ Software

= Hom4PS (v2.0)
= |Isolated solutions only
= Fast polyhedral
= Author: T.-Y. Li (MSU)

= PHC
= Numerical algebraic geometry
= Polyhedral method
= Author: Jan Verschelde (UIC)

= Bertini (v1.2)

= Numerical algebraic geometry
Parallel computing option
Robust & efficient adaptive multiprecision
Regeneration

= Authors: Bates, Hauenstein, Sommese & Wampler

= Free download at
www.nd.edu/~sommese/bertini/
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‘ Wrap-up

= Much of kinematics Is applied algebraic
geometry

= Numerical polynomial continuation
solves for isolated points

= Numerical algebraic geometry extends
this to positive-dimensional sets

= Regeneration Is the newest technique

= Bertini v1.2 offers all this & more
= Parallel computing, in particular
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