
SIAM Annual Mtg. 2010, Pittsburgh

Kinematics and 
Numerical Algebraic Geometry

Charles Wampler
General Motors R&D Center
Warren, Michigan, USA

Including collaborations with:
Andrew Sommese Jon Hauenstein Dan Bates
Notre Dame             Texas A&M     Colorado St.



2SIAM Annual Mtg. 2010, Pittsburgh

Outline

Motivation:
Brief introduction to kinematics

Basic polynomial continuation
Finding isolated roots

Numerical algebraic geometry
Dealing with positive-dimensional sets

Examples from kinematics
Some recent work
Software



3SIAM Annual Mtg. 2010, Pittsburgh

Part I

Motivation
Kinematics in a nutshell
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Why study polynomial systems?

Mathematics
Intrinsically interesting

Algebra, algebraic geometry
Nonlinear, but with lots of structure

Application areas
Economics & finance

Nash Equilibria
Chemical equilibrium 
Computer-aided Geometric Design (CAGD)

Polynomial surface patches (B-splines, etc.)
Control theory

Pole placement, Optimal control
Kinematics…
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Kinematics: Then & Now

Model of Watt Engine 
1784

FANUC F200 
Robot NASA-GM 

Robonaut2

Closed-chain planar Closed-chain spatial Open-chain spatial
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Application: Kinematics

Constrained mechanical motion
Two major classes:

Linkages for motion constraint & 
transformation

Suspensions, engines, swing panels, etc.

Computer-controlled motion devices
Robots, human-assist devices, etc.

Rigid links + common joints = 
polynomial equations

Algebraic kinematics
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Rigid-Body Motion

A rigid body has two defining properties:
Preservation of distance 
Preservation of handedness

Accordingly, the pose of a rigid body lies in SE(3)
SE(3)= {(p,A): p R3,  A SO(3)}

SE(3) is algebraic, 
subject to the defining 
eqns. for SO(3):

ATA = I,  det A = 1

dim SE(3) = 6
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Joints: Lower-order pairs

f=1, c=5

P R H

Prismatic Rotational Helical (Screw)

f=2, c=4

C

Cylindrical

f=3, c=3

E S

Plane Sphere

f = freedom

c = constraint         
in SE(3)

Not Algebraic
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Example: Serial 6R Robot
Parameters given:

Length di , offset ai , twist i
Input:

Rotation angle at each 
joint, i

Output:
Position & orientation of 
end of arm, Tend

Forward problem:
Unique answer

Inverse problem:
Up to 16 solutions
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Big Picture

:

J(x,q) K(x,q)
input output

Mechanism 
parameter 

space 
(link geometry)

Mechanism Space
(parameterized motions)

Forward kinematics

Inverse kinematics

Workspace 
analysis

Mechanism 
synthesisSolution set of 

polynomial system 
F(x,q)=0,

F: CN Cm Cn

qqx ),(
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Part II

Basic polynomial continuation
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What is Continuation?
A method to solve N equations in N unknowns

Step 1: Define a homotopy

Step 2: From each solution point of H(x,1) = 0, 
follow the solution paths of H(x,t) = 0 as t goes to 0. 

For polynomial systems, we can choose H to ensure 
that

All the paths go all the way to t =0.
Every isolated solution of F (x )=0 has a path leading to it.
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Basic Total-degree Homotopy

To find all isolated solutions to the polynomial system 

form the linear homotopy

H(x,t) = (1-t)F(x) + tG(x)=0,

where 

Number of paths to track =

idi
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Solution paths

Paths x(t) implicitly defined by homotopy
H (x; p(t)) = 0

Nongeneric

x

Parameter space

t
pstart

pfinal
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Why it works: Generic Root Count

A parameterized family of polynomial systems F(x,q)=0 has 
a generic root count :

Assume F: CN Q Cn,  Q an irreducible algebraic set

For almost all q Q, F(x,q)=0 has the same number of 
nonsingular, isolated roots.  This is the generic root count.

The exceptions in Q are a proper algebraic subset.

So, a random 1-real-dimensional path in Q misses exceptions 
with probability one.

For a nested parameter space, the generic root count can 
only go down.  (“Upper semi-continuity”)
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Parameter Continuation

initial 
parameter 

space

target 
parameter 

space

Start system easy in initial parameter space
Root count may be much lower in target parameter space
Initial run is 1-time investment for cheaper target runs

start
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Parameter Continuation: 9-pt path synthesis

Total degree
78=5,764,801

Multihomogeneous
286,720

Symmetry
143,360

Parameter homotopy
1442 paths

143,360

1442

1442

1442

1442
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Part III

Numerical Algebraic Geometry
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Irreducible Decomposition
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Numerical Irreducible Decomposition
Witness Set

Intersection of an algebraic set 
with a linear space of 
complementary dimension

Get d points on each degree d
component

Defined dimension-by-dimension
Witness set generation

Slice for every dimension
Homotopy finds all isolated 
solutions at each dimension

Decomposition
Remove “junk” points
At each dimension, sort witness 
set into irreducible components
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Part IV: Examples

Let’s see Numerical Algebraic Geometry 
at work in kinematics
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Example: 7-bar Structure

Problem:

Assemble these 7  
pieces, as labeled.
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Result for Generic Links

18 rigid 
structures

• 8 real, 10 complex 
for this set of links.

•All isolated – can be 
found with traditional 
homotopy
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Special Links (Roberts Cognates)

Dimension 1:
6th degree four-bar motion

Dimension 0:
1 of 6 isolated (rigid) assemblies
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Exceptional Stewart-Gough Platform

Case 1: Top & 
bottom plates are 
equilateral 
triangles

Degree of top 
platform motion 
in Study (dual 
quaternion) 
coordinates is 28
Degree of path of 
a tracing point is 
40.

Case 2: In addition, leg lengths equal & 
plates congruent

Factors as 6+(6+6+6)+4=28

This is an 
algebraic 
curve of 

degree 40
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Even More Exceptional Stewart-Gough Platform

As before, but with 
leg lengths = altitude of base 
triangle
“Foldable Griffis-Duffy Platform”

Degree 28 component now 
factors as 

3 [2 1]+3 2+4+(4+4+4)
We have extracted the real parts 
of these complex components

3 double lines, 3 quadrics, 1 quartic
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Part V

Some recent work
Equation-by-equation Regeneration
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Working Equation-by-Equation

Basic step
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Regeneration: Step 1
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Regeneration: Step 2
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Test Run: Lotka-Volterra Systems
Discretized PDE (finite differences) population model

Order n system has 8n sparse bilinear equations

Total degree = 28n

Polyhedral (mixed volume) 
= 24n is exact
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Lotka-Volterra Systems (cont.)
Time Summary -- Single Processor

Regeneration parallelizes easily (polyhedral does not)

-1

0

1

2

3

4

1 2 3 4 5

PHC

HOM4PS-2.0

Bertini

Order, n

1 sec

1/60 sec

1 min

1 hour

2.5 day 

5 mos
PHC

Hom4PS Bertini(polyhedral)

(regeneration)
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Software

Hom4PS (v2.0)
Isolated solutions only
Fast polyhedral
Author: T.-Y. Li (MSU)

PHC
Numerical algebraic geometry
Polyhedral method
Author: Jan Verschelde (UIC)

Bertini (v1.2)
Numerical algebraic geometry

Parallel computing option
Robust & efficient adaptive multiprecision
Regeneration

Authors: Bates, Hauenstein, Sommese & Wampler
Free download at

www.nd.edu/~sommese/bertini/
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Wrap-up

Much of kinematics is applied algebraic 
geometry
Numerical polynomial continuation 
solves for isolated points
Numerical algebraic geometry extends 
this to positive-dimensional sets
Regeneration is the newest technique
Bertini v1.2 offers all this & more

Parallel computing, in particular


